BBC Radiophonic Workshop 1958-1996


1. Overview


This chapter provides a brief look at the technology used at the BBC Radiophonic Workshop from its inception in 1958 to its closure in 1996. For more about the early period or artistic considerations, see The BBC Radiophonic Workshop, The First 25 Years by Desmond Briscoe and Roy Curtis Bramwell, ©BBC, London, United Kingdom, 1983, ISBN 0 563 20150 9.

Introduction

The Radiophonic Workshop began by providing musique concrète material for radio, initially in the field of drama. Using a wide range of equipment, often obtained from other departments, it soon acquired an enviable reputation for the sounds and music that it created for radio and television.

In its early work, under the direction of Desmond Briscoe,

the only available materials were real sounds that were recorded and manipulated using tape machines and other devices. The process was similar to modern sampling, using reverse playback, speed or pitch change, equalisation and reverberation, accompanied by endless skilful editing. Many sources of sound were familiar to drama studios, such as pebbles in boxes, mutilated musical instruments or even an old copper water tank!

The voltage controlled synthesiser of the late sixties caused significant change. Sound and music could now be created immediately, although often only one note could be played at a time! The arrival of multitrack tape recorders in the following decade enabled composers to build up complex layers of material that could be modified as work progressed. During this period the Workshop enjoyed a short period of fame, mainly because of the Doctor Who science fiction series, although it soon retreated into relative obscurity. In the mid-seventies, the department began to expand and took up new initiatives, working on alternative material that wasn’t always strictly ‘radiophonic’.

By the eighties, computer control of digital musical instruments via the Musical Instrument Digital Interface (MIDI), using Macintosh computers, was a reality. This was complemented in the last decade by recording systems based on more advanced computers. The all-digital studio had arrived. However, by the nineties this technology was available to all and the Workshop was forced to close.

The Sixties

Rooms 13 and 14 at the Maida Vale studios were the birthplace of the Workshop. The original tape recorders included small Ferrograph models and the monstrous Motosacoche machines. The latter were particularly difficult to use since these took fifteen seconds for the tape to get up to speed. In later years, Room 13 was devoted to working with film, although some older tape machines remained. These included an early Ampex recorder and an EMI BTR/2, the latter having an extra motorised spool on one side for editing. In addition, there was a Prevost 35 mm film viewing machine and a film editing machine. Much of early work for television was recorded onto ‘sepmag’ film (35 mm wide magnetic tape with sprockets) so that it could be synchronised with a matching picture film.

ROOM AND TECHNOLOGY VTHAT PROVIDED SOUND EFFECTS FOR DOCTOR WHO

For many years Room 12 provided Doctor Who sound effects. It had a specially-built mixing console fitted with ‘continuous’ carbon faders, an innovation for the time, and miniature valve amplifiers. Three Philips tape machines, with inter-linked remote control, provided a comprehensive tape manipulation facility, whilst a Leevers-Rich tape recorder had both ‘continuous’ and ‘chromatic’ tape speed controllers. In addition, an EMI TR/90 tape machine was equipped with the Tempophon, whose spinning head allowed the pitch of a recording to be changed without changing the tempo.

THE TECHNOLOGY USED IN SIXTIES:

Room 11 contained an early transistorised mixing desk. This incorporated ‘Glowpot’ faders, designed by Dave Young, the Workshop’s highly inventive engineer. Traditional BBC ‘stud faders’ (which were switched attenuators) suffered from ‘stud noise’, an effect particularly noticeable on tonal sounds. The Glowpot fader overcame this problem by using a modified stud fader to control the intensity of light-bulbs that in turn, illuminated a pair of light dependent resistors (LDRs) within an attenuator network. The thermal inertia of the light-bulbs effectively eliminated any stud noise.

The sixties saw the first voltage-controlled synthesisers, the biggest of which appeared in Room 10. The Delaware was manufactured by Electronic Music Studios (London) Ltd, more usually known as EMS. This machine was a modified Synthi 100, incorporating a two-level keyboard and numerous elements connected by two ‘virtual earth’ patching matrixes. It also included a real-time sequencer that took analogue control and gate signals from the keyboard, digitised them and stored the data in RAM. This machine’s greatest problem, common to most voltage-controlled synthesisers, was that of VCO frequency drift, usually caused by changes in temperature as the equipment warmed up. A later attempt to replace the Delaware by a new machine, consisting of Ken Gale’s Wavemaker modules, came to an end as new technology, much of it from Japan, began to arrive in the late seventies.

Few other synthesisers were used at this time, apart from the VCS3, also produced by EMS. This highly adaptable and portable machine first appeared in 1968 and was particularly useful for sound effects. It also incorporated a versatile ‘virtual earth’ patching matrix for interconnecting parts of the synthesiser. The later ARP Odyssey, which had front-panel switches for patching, was also popular.

The Workshop’s main source of reverberation or ‘echo’ came from two EMT 140 echo plates. Each consisted of a large box containing a steel plate suspended on springs. Two transducers, one for transmitting sounds to the device and the other for receiving reverberant sounds, were attached to the plate. A remote-controlled servo system adjusted the mounting springs, modifying the reverberation time (or ‘room size’) of the plate: typically, this was set to between two and three seconds.

Alternative reverberation was provided by an echo room, a small area of oblong dimensions with a sloping ceiling. A loudspeaker was positioned at the ‘short’ end whilst a microphone, located at the opposite end, picked up the reverberant sound. In later years a pair of microphones were fitted to give stereo sound. Unlike the plate, the room’s reverb time was fixed at four seconds.

The least successful form of reverberation was provided by the humble echo spring. This incorporated a coiled spring, usually over 200 mm in length, with audio transducers at each end. The results weren’t too impressive, although interesting sounds could be produced by hitting such a device!

The Seventies

By the mid-seventies the Workshop was in the doldrums (depression) , little having changed since the late sixties. The department had developed piecemeal, acquiring rooms along the corridor of the Maida Vale Studios as it went. Apart from Rooms 12, 13 and 14, most studio were converted offices.

By 1974, Rooms 13 and 14 contained a Glensound DK/1 stereo mixing console. Unusually, this mixer had pan-pots (for positioning the stereo image) on each channel fader, allowing the user to ‘pan’ and ‘fade’ a sound simultaneously. This studio also had the first multitrack tape machine, a Studer A80 8-track. A push-button matrix allowed the user to send any sources to any of the multitrack’s inputs. Later, as the Workshop expanded, this installation moved into a new area, Room 36.

The Workshop’s first ‘off the shelf’ mixing desk arrived in 1979. The Neve 8066 was a conventional twenty-channel music console, coupled to a Studer A80 16-track recorder. It was installed in Studio E, part of the original room 13, in time for Rockcoco, a rock musical produced by Paddy Kingsland.

This installation was soon followed by others containing Soundcraft Series 2 mixers that provided eight group outputs, allowing any source to be directed to an 8-track recorder’s inputs. These consoles were installed in Studio C (originally Dave Young’s office) and in Studio F (the original room 10). But these installations were only stop-gap measures, an attempt to catch up on lost time.

Several highly versatile electronic effects devices appeared at this time. These included Roland flangers and phasers that used quasi-digital bucket-brigade devices to introduce delays into audio signals.

The Eighties

During this decade the consumer music industry expanded, giving access to a tremendous range of ‘off the shelf’ products. With a little imagination, sometimes even stretching equipment beyond what the manufacturer envisaged, these devices offered the Workshop unseen new opportunities.

By this time the department was showing signs of serious financial deprivation. Under the hand of Brian Hodgson it at last received the funding it deserved, with one of the six studios being upgraded each year. Once again, Soundcraft consoles seemed the obvious choice.

By 1982, Studio B (the original room 36) and Studio D (Maida Vale’s wartime control room) had Soundcraft Series 1624 mixers, designed for 16-track operation, whilst Studio A incorporated a Series 800 console, providing for 8-track work. Next came Studios C, E and H (the latter converted from a small film theatre) with Soundcraft 2400 consoles, this time with 24-track capacity.

The new mixers completely justified the advantages of low-cost equipment. By using unbalanced audio circuits, instead of ‘broadcast’ transformer-balanced circuits, a very high sound quality was maintained. Consequently transformers were removed from virtually all other equipment.

In 1981, computer technology arrived in the form of the Fairlight Computer Musical Instrument (CMI). This was an adapted minicomputer that incorporated a graphical display and light pen. The CMI outlasted many later ‘top end’ machines, some of which disappeared without trace.

Sequencing

During the early eighties, the music industry launched the Musical Instrument Digital Interface (MIDI), a system for connecting musical devices and computers. MIDI sockets soon appeared on the back of many keyboards and synthesisers. The initial reaction was: ‘what could it be used for?’

The answer was sequencing. This process took a performance from a musical keyboard and recorded it as digital data in a MIDI sequencer. The data could be edited as necessary and subsequently used to play any MIDI instrument. The beauty of the system was that no sounds were recorded on tape: the information was simply held as a computer file that could be updated at any time. Even the choice as to which sound or ‘voice’ was triggered by keyboard actions could be left to the very last moment.

One early sequencer, the Yamaha QX1, provided eight MIDI outputs but required the composer to stare for hours at a small liquid crystal display (LCD). A more important arrival was the Apple Macintosh and associated MIDI interface, first used at the Workshop during 1986. The earliest machine was a Mac Plus, later superseded by the Mac II, IIx and finally the Quadra 900. The Mac’s WIMP (Window Icon Mouse Pointer) environment was ideal for a non-technical musician. In addition, plenty of software for housekeeping and programme documentation was available.

The new range of digital MIDI synthesisers also used completely new techniques, such as frequency modulation (FM), featured in Yamaha’s DX7. Its dramatic and highly musical sounds accelerated the demise of older analogue machines. Many more all-digital synthesisers were soon to follow.

Synchronisation

The Workshop regularly produced material for television, involving the business of synchronising sound to picture. Working with film was fairly easy: the passing picture frames were counted (at a rate of 24 or 25 frames per second) and the time for each ‘cue’ was calculated. Later, the completed sound track could be transferred onto sepmag tape and then played in ‘synch’ with the original picture film. If the two weren’t in step, the sepmag tape and picture film could be ‘slipped’ against each other or edited with a razor blade. However, it was usual to edit the sepmag tape rather than the picture film!

With a new generation of video machines, timecode also could be provided as useful data. In a Video Home System (VHS) machine, one of the stereo ‘hi-fi’ sound tracks carried SMPTE longitudinal timecode, whilst on the later U-matic machines it was conveyed via one of the ‘linear’ sound tracks.

.

A Kit of Parts

By 1987, the explosive growth in technology had made the conventional studio with its large mixing console almost unworkable. The composers found themselves surrounded in a veritable sea of keyboards and ‘effects racks’ bulging with equipment. Clearly a new approach was necessary and this would involve MIDI. One composer, Peter Howell, recognised that the central focus of an ideal studio ought to be a Macintosh computer that controlled all aspects of studio operation. By now, the task of mixing had almost become subservient to the creation and sequencing of sound. Three products appeared that offered a solution to the problem. These were the Yamaha DMP7

Putting these elements together resulted in a trial studio assembled in March of 1988. This required 200 audio cables and considerable effort from Peter Howell, Mark Wilson (Development Coordinator), Ray Riley (Engineer) and Ray White (Senior Engineer). This exciting new studio system was soon in operation, the mixers and matrixes proving their worth. The software, based on HyperCard, was refined as the studio was used and later became known as Cue Card.

Conclusion

New digital samplers and other devices allowed the Workshop to finally return to its tradition of making sounds from those of the real world, so reopening a vital repertoire for musical composition. During a period of electrifying developments, the Workshop had remained at the ‘sharp end’ of the industry. But in the final analysis, whatever technology had to offer, an artistically creative production could only come from the imagination, skill and endless patience of the composer.

©Ray White 2001.

http://whitefiles.org/rws/r01.htm

As I understood after having read this article - this was the time and the place , when technology developed from scratch ("only one note could be played at a time) to heights when it continuously offered something new for the industry, but problems such as controll over the devices and actually producing what was intended appeared.


SO this could be our... 2nd or 3rd stop in the timeline,but I think,linke in the time machine of advertisment , we still need to cover where the need for such processes came from.


0 comments:

Post a Comment

top